10 research outputs found

    The effects of a typical training run on overuse running-related injury risk factors in recreational runners

    Get PDF
    Running has increased in popularity over recent decades to become one of the five most popular recreational activities worldwide. With this rise in popularity, there has however been a concomitant increase in rate of running related overuse injuries with epidemiology studies reporting 7.7 injuries every 1000 hours of running. Patellofemoral pain and iliotibial band syndrome are the most common RROI accounting up to 17% and 8%, respectively. Runners experiencing either injury share common gait signatures of excessive hip adduction. Running induced fatigue has been shown to reduce strength in numerous muscle groups important for initiating and regulating gait, notably increased hip adduction. These fatigue induced changes to gait have been examined during prolonged or continuous runs, often to exhaustion. Runners however do not typically perform runs to exhaustion during their regular training, rather they perform high intensity interval training or medium intensity continuous running. The level of fatigue induced by these typical training sessions, or its impact on gait is unknown. The aim of this thesis was to examine the effect of fatigue on risk factors associated with development of running related injuries during typical training runs. Acceptable to excellent relative and absolute reliability for risk factors were reported. The absolute reliability enabled an alternative statistical approach to be alongside traditional, group level, P values. This alternative statistical approach used minimum detectable change to detect ‘real changes’ in risk factors post-run. Following two typical running sessions, fatigue induced a changes in running related overuse injury risk factors were found. There was a significant (P < 0.05) reduction in muscle strength (12%) following high intensity interval training session and medium intensity continuous run (10.6%) in both the hip and knee musculature. Force reduction was accompanied by increased maximum hip adduction angle and range of motion (P < 0.05). Fatigue increased coordination variability significantly (P < 0.05) in nearly all variables for hip and knee couplings. Individual assessment showed that the high intensity interval training run induced gait changes in more runners, a finding not observable in group assessment. The fatigue induced changes following training runs could potentially increase the risk of RROI development. This risk however, can only be considered detrimental if still present immediately prior to the next training session. Recovery of strength, kinematic and coordination variability at 24-h following a high intensity interval run was then examined. To fully assess recovery kinetics, evoked electrical stimulation was used to examine the extent of central (voluntary activation) and peripheral (knee extension maximum voluntary contractions and quadriceps twitch potentiation) fatigue immediately post and 24-h after high intensity interval training session. The results not only corroborated those in the previous findings of the thesis, but showed decrements in both central and peripheral drive. Collectively, immediately post, runners exhibited a reduction in hip musculature strength (8.1%),voluntary activation (6.8%), both remaining significantly (P < 0.05) impaired at 24-h. The changes were also accompanied by increased maximum angle and RoM for hip adduction immediately post training run and at 24-hr post. Coordination variability was again increased with fatigue and remained increased at 24-h in those who remained fatigued. The most noteworthy finding was that while collectively there were signs of lack of recovery, on an individual level most runners had recovered within 24-h, while only a few did not and still exhibit impaired gait. Only four runners were identified to be at risk of injury development following fatigue induced changes to risk factors and impaired neuromuscular function following a typical training run. This thesis demonstrated that fatigue induced during a typical training session causes changes to gait. For a minority of runners these changes are still evident 24-h after training placing them at an increased risk of running related overuse injury development

    Fatigue Induced Changes in Muscle Strength and Gait Following Two Different Intensity, Energy Expenditure Matched Runs

    Get PDF
    Purpose: To investigate changes in hip and knee strength, kinematics, and running variability following two energy expenditure matched training runs; a medium intensity continuous run (MICR) and a high intensity interval training session (HIIT). Methods: Twenty (10F, 10M) healthy master class runners were recruited. Each participant completed the HIIT consisting of six repetitions of 800 meters with a 1:1 work: rest ratio. The MICR duration was set to match energy expenditure of the HIIT session. Hip and knee muscular strength were examined pre and post both HIIT and MICR. Kinematics and running variability for hip and knee, along with spatiotemporal parameters were assessed at start and end of each run-type. Changes in variables were examined using both 2 x 2 ANOVAs with repeated measures and on an individual level when the change in a variable exceeded the minimum detectable change (MDC). Results: All strength measures exhibited significant reductions at the hip and knee (P < .05) with time for both run-types; 12% following HIIT, 10.6% post MICR. Hip frontal plane kinematics increased post run for both maximum angle (P < 0.001) and range of motion (P = 0.003). Runners exhibited increased running variability for nearly all variables, with the HIIT having a greater effect. Individual assessment revealed that not all runners were effected post run and that following HIIT more runners had reduced muscular strength, altered kinematics and increased running variability. Conclusion: Runners exhibited fatigue induced changes following typical training runs, which could potentially increase risk of injury development. Group and individual assessment revealed different findings where the use of MDC is recommended over that of P values

    Gait and Neuromuscular Changes Are Evident in Some Masters Club Level Runners 24-h After Interval Training Run

    Get PDF
    Purpose: To examine the time course of recovery for gait and neuromuscular function immediately after and 24-h post interval training. In addition, this study compared the impact of different statistical approaches on detecting changes. Methods: Twenty (10F, 10M) healthy, recreational club runners performed a high-intensity interval training (HIIT) session consisting of six repetitions of 800 m. A 6-min medium intensity run was performed pre, post, and 24-h post HIIT to assess hip and knee kinematics and coordination variability. Voluntary activation and twitch force of the quadriceps, along with maximum isometric force were examined pre, post, and 24-h post significance HIIT. The time course of changes were examined using two different statistical approaches: traditional null hypothesis significance tests and “real” changes using minimum detectable change. Results: Immediately following the run, there were significant (P < 0.05) increases in the hip frontal kinematics and coordination variability. The runners also experienced a loss of muscular strength and neuromuscular function immediately post HIIT (P < 0.05). Individual assessment, however, showed that not all runners experienced fatigue effects immediately post HIIT. Null hypothesis significance testing revealed a lack of recovery in hip frontal kinematics, coordination variability, muscle strength, and neuromuscular function at 24-h post, however, the use of minimum detectable change suggested that most runners had recovered. Conclusion: High intensity interval training resulted in altered running kinematics along with central and peripheral decrements in neuromuscular function. Most runners had recovered within 24-h, although a minority still exhibited signs of fatigue. The runners that were not able to recover prior to their run at 24-h were identified to be at an increased risk of running-related injury

    Hypogravity reduces trunk admittance and lumbar muscle activation in response to external perturbations

    Get PDF
    Reduced paraspinal muscle size and flattening of spinal curvatures have been documented after spaceflight. Assessment of trunk adaptations to hypogravity can contribute to develop specific countermeasures. In this study, parabolic flights were used to investigate spinal curvature and muscle responses to hypogravity. Data from five trials at 0.25g, 0.50g and 0.75g were recorded from six participants, positioned in a kneeling-seated position. During the first two trials, participants maintained a normal, upright posture. In the last three trials, small-amplitude perturbations were delivered in the anterior direction at the T10 level. Spinal curvature was estimated using motion capture cameras. Trunk displacement and contact force between the actuator and participant were recorded. Muscle activity responses were collected using intramuscular electromyography (iEMG) of the deep and superficial lumbar multifidus, iliocostalis lumborum, longissimus thoracis, quadratus lumborum, transversus abdominis, obliquus internus and obliquus externus muscles. The root mean square iEMG and the average spinal angles were calculated. Trunk admittance and muscle responses to perturbations were calculated as closed-loop frequency response functions. Compared with 0.75g, 0.25g resulted in: lower activation of the longissimus thoracis (P=0.002); lower responses of the superficial multifidus at low frequencies (P=0.043); lower responses of the superficial multifidus (P=0.029) and iliocostalis lumborum (P=0.043); lower trunk admittance (P=0.037) at intermediate frequencies; and stronger responses of the transversus abdominis at higher frequencies (p=0.032). These findings indicate that exposure to hypogravity reduces trunk admittance, partially compensated by weaker stabilizing contributions of the paraspinal muscles and coinciding with an apparent increase of the deep abdominal muscle activity

    Effect of portable noninvasive ventilation on thoracoabdominal volumes in recovery from intermittent exercise in patients with COPD

    Get PDF
    We previously showed that use of portable noninvasive ventilation (pNIV) during recovery periods within intermittent exercise improved breathlessness and exercise tolerance in patients with COPD compared with pursed-lip breathing (PLB). However, in a minority of patients recovery from dynamic hyperinflation (DH) was better with PLB, based on inspiratory capacity. We further explored this using Optoelectronic Plethysmography to assess total and compartmental thoracoabdominal volumes. Fourteen patients with COPD (means ± SD) (FEV1: 55% ± 22% predicted) underwent, in a balanced order sequence, two intermittent exercise protocols on the cycle ergometer consisting of five repeated 2-min exercise bouts at 80% peak capacity, separated by 2-min recovery periods, with application of pNIV or PLB in the 5 min of recovery. Our findings identified seven patients showing recovery in DH with pNIV (DH responders) whereas seven showed similar or better recovery in DH with PLB. When pNIV was applied, DH responders compared with DH nonresponders exhibited greater tidal volume (by 0.8 ± 0.3 L, P = 0.015), inspiratory flow rate (by 0.6 ± 0.5 L/s, P = 0.049), prolonged expiratory time (by 0.6 ± 0.5 s, P = 0.006), and duty cycle (by 0.7 ± 0.6 s, P = 0.007). DH responders showed a reduction in end-expiratory thoracoabdominal DH (by 265 ± 633 mL) predominantly driven by reduction in the abdominal compartment (by 210 ± 494 mL); this effectively offset end-inspiratory rib-cage DH. Compared with DH nonresponders, DH responders had significantly greater body mass index (BMI) by 8.4 ± 3.2 kg/m2, P = 0.022 and tended toward less severe resting hyperinflation by 0.3 ± 0.3 L. Patients with COPD who mitigate end-expiratory rib-cage DH by expiratory abdominal muscle recruitment benefit from pNIV application. NEW & NOTEWORTHY Compared with the pursed-lip breathing technique, acute application of portable noninvasive ventilation during recovery from intermittent exercise improved end-expiratory thoracoabdominal dynamic hyperinflation (DH) in 50% of patients with COPD (DH responders). DH responders, compared with DH nonresponders, exhibited a reduction in end-expiratory thoracoabdominal DH predominantly driven by the abdominal compartment that effectively offset end-expiratory rib cage DH. The essential difference between DH responders and DH nonresponders was, therefore, in the behavior of the abdomen

    The number of strides required for treadmill running gait analysis is unaffected by either speed or run duration

    Get PDF
    Participation in running events has increased recently, with a concomitant increase in the rate of running related injuries (RRI). Mechanical overload is thought to be a primary cause of RRI, it is often detected using motion analysis to examine running mechanics during either overground or treadmill running. In treadmill running, no clear consensus for the number of strides required to establish stable kinematic data exists. The aim of this study was to establish the number of strides needed for stable data when analysing gait kinematics in the stance phase of treadmill running. Twenty healthy, masters age group, club runners completed a high intensity interval training run (HIIT) and an energy-expenditure matched medium intensity continuous run (MICR). Thirty consecutive strides at start and end of each run were identified. Sequential averaging was employed to determine the number of strides required to establish a stable value. No significant differences existed in the number of strides required to achieve stable values. Twenty consecutive strides are required to be 95% confident stable values exist for maximum angle, angle at initial foot contact, and range of motion at the ankle, knee, and hip joints variables at the ankle, knee, and hip joints, in all three planes of motion, and spatiotemporal regardless of running speed and time of capture

    Estimating Knee Movement Patterns of Recreational Runners Across Training Sessions Using Multilevel Functional Regression Models

    No full text
    Modern wearable monitors and laboratory equipment allow the recording of high-frequency data that can be used to quantify human movement. However, currently, data analysis approaches in these domains remain limited. This paper proposes a new framework to analyze biomechanical patterns in sport training data recorded across multiple training sessions using multilevel functional models. We apply the methods to subsecond-level data of knee location trajectories collected in 19 recreational runners during a medium-intensity continuous run (MICR) and a high-intensity interval training (HIIT) session, with multiple steps recorded in each participant-session. We estimate functional intra-class correlation coefficient to evaluate the reliability of recorded measurements across multiple sessions of the same training type. Furthermore, we obtained a vectorial representation of the three hierarchical levels of the data and visualize them in a low-dimensional space. Finally, we quantified the differences between genders and between two training types using functional multilevel regression models that incorporate covariate information. We provide an overview of the relevant methods and make both data and the R code for all analyses freely available online on GitHub. Thus, this work can serve as a helpful reference for practitioners and guide for a broader audience of researchers interested in modeling repeated functional measures at different resolution levels in the context of biomechanics and sports science applications

    Absolute Reliability of Gait Parameters Acquired With Markerless Motion Capture in Living Domains.

    No full text
    Purpose: To examine the between-day absolute reliability of gait parameters acquired with Theia3D markerless motion capture for use in biomechanical and clinical settings. Methods: Twenty-one (7 M,14 F) participants aged between 18 and 73 years were recruited in community locations to perform two walking tasks: self-selected and fastest-comfortable walking speed. Participants walked along a designated walkway on two separate days.Joint angle kinematics for the hip, knee, and ankle, for all planes of motion, and spatiotemporal parameters were extracted to determine absolute reliability between-days. For kinematics, absolute reliability was examined using: full curve analysis [root mean square difference (RMSD)] and discrete point analysis at defined gait events using standard error of measurement (SEM). The absolute reliability of spatiotemporal parameters was also examined using SEM and SEM%. Results: Markerless motion capture produced low measurement error for kinematic full curve analysis with RMSDs ranging between 0.96° and 3.71° across all joints and planes for both walking tasks. Similarly, discrete point analysis within the gait cycle produced SEM values ranging between 0.91° and 3.25° for both sagittal and frontal plane angles of the hip, knee, and ankle. The highest measurement errors were observed in the transverse plane, with SEM &gt;5° for ankle and knee range of motion. For the majority of spatiotemporal parameters, markerless motion capture produced low SEM values and SEM% below 10%. Conclusion: Markerless motion capture using Theia3D offers reliable gait analysis suitable for biomechanical and clinical use

    Feasibility of Markerless Motion Capture for Three-Dimensional Gait Assessment in Community Settings.

    No full text
    Three-dimensional (3D) kinematic analysis of gait holds potential as a digital biomarker to identify neuropathologies, monitor disease progression, and provide a high-resolution outcome measure to monitor neurorehabilitation efficacy by characterizing the mechanisms underlying gait impairments. There is a need for 3D motion capture technologies accessible to community, clinical, and rehabilitation settings. Image-based markerless motion capture (MLMC) using neural network-based deep learning algorithms shows promise as an accessible technology in these settings. In this study, we assessed the feasibility of implementing 3D MLMC technology outside the traditional laboratory environment to evaluate its potential as a tool for outcomes assessment in neurorehabilitation. A sample population of 166 individuals aged 9-87 years (mean 43.7, S.D. 20.4) of varied health history were evaluated at six different locations in the community over a 3-month period. Participants walked overground at self-selected (SS) and fastest comfortable (FC) speeds. Feasibility measures considered the expansion, implementation, and practicality of this MLMC system. A subset of the sample population (46 individuals) walked over a pressure-sensitive walkway (PSW) concurrently with MLMC to assess agreement of the spatiotemporal gait parameters measured between the two systems. Twelve spatiotemporal parameters were compared using mean differences, Bland-Altman analysis, and intraclass correlation coefficients for agreement (ICC2,1) and consistency (ICC3,1). All measures showed good to excellent agreement between MLMC and the PSW system with cadence, speed, step length, step time, stride length, and stride time showing strong similarity. Furthermore, this information can inform the development of rehabilitation strategies targeting gait dysfunction. These first experiments provide evidence for feasibility of using MLMC in community and clinical practice environments to acquire robust 3D kinematic data from a diverse population. This foundational work enables future investigation with MLMC especially its use as a digital biomarker of disease progression and rehabilitation outcome
    corecore